Formation of reactive oxygen species at increased contraction frequency in rat cardiomyocytes.
نویسندگان
چکیده
OBJECTIVE Reactive oxygen species (ROS) play an ambivalent role in cardiomyocytes: low concentrations are involved in cellular signaling, while higher concentrations contribute to cellular injury. We studied ROS formation during increases in contraction frequency in isolated cardiomyocytes. METHODS Rat ventricular cardiomyocytes were loaded with dichlorodihydrofluorescein and electrically stimulated (37 degrees C). ROS formation was assessed by the rate of oxidation-dependent fluorescence increase (OxR). Oxygen consumption (VO(2)) and NAD(P)H autofluorescence were measured in parallel experiments. RESULTS Increases in contraction frequency were accompanied by an increase in VO(2) and a decrease in NAD(P)H fluorescence. OxR increased to 124+/-4%, 146+/-8%, 204+/-25% and 256+/-29% of OxR at baseline during 1, 2, 3 and 4 Hz stimulation, and subsequently returned to baseline values with 0.2 Hz. The OxR increase was dose-dependently inhibited by the antioxidant NAC (10 and 100 mM), but unaffected by the NO synthase inhibitor l-NAME (200 microM and 10 mM). The OxR increase was attenuated when myosin ATPase activity was inhibited by butanedione monoxime (BDM; 5 mM). CONCLUSION Increased contraction frequency induces ROS formation in rat cardiomyocytes.
منابع مشابه
Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation
The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...
متن کاملIdentification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation
The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...
متن کاملIron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species
Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...
متن کاملIron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species
Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...
متن کاملSweet Chestnut (Castanea sativa Mill.) Bark Extract: Cardiovascular Activity and Myocyte Protection against Oxidative Damage
This work was aimed at evaluating the cardioprotective effects of Castanea sativa Mill. (CSM) bark extract characterized in its phenolic composition by HPLC-DAD-MS analysis. The study was performed using primary cultures of neonatal rat cardiomyocytes to investigate the antioxidant and cytoprotective effects of CSM bark extract and isolated guinea pig left and right atria, left papillary muscle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cardiovascular research
دوره 71 2 شماره
صفحات -
تاریخ انتشار 2006